Generalizations ofp-valent functions via the hadamard product
نویسندگان
چکیده
منابع مشابه
On Generalizations of Quasi-Hadamard Products of p-valent Functions
The purpose of the present paper is to establish some interesting results on the generalizations of quasi-Hadamard product of functions belonging to the classes of p-valent starlike and p-valent convex functions of order α in the open unit disc U. Our results improve the results of previous authors to the case when r and s are any positive real numbers such that s > 1. It is worth noting that t...
متن کاملHADAMARD PRODUCT OF CERTAIN MEROMORPHIC p−VALENT STARLIKE AND p−VALENT CONVEX FUNCTIONS
In this paper, we establish some results concerning the Hadamard product of certain meromorphic p-valent starlike and meromorphic p-valent convex functions analogous to those obtained by Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234) and M. L. Mogra (Tamkang J. Math. 25(1994), no. 2, 157-162).
متن کاملGeneralizations of modified-Hadamard products of p-valent functions with negative coefficients
Let T (n, p) denote the class of functions of the form f (z) = z p − ∑ ∞ k=n ak+pz k+p (ak+p ≥ 0; p, n ∈ N ) which are analytic and p-valent in the open unit disc U = {z : |z| < 1}. For functions f j (z) ( j = 1, 2) belonging to T (n, p), generalizations of the modified-Hadamard product of f1(z) and f2(z) represented by ( f1∆ f2) (r, s; z) (r, s ∈ R) are introduced. In this paper, we obtain sev...
متن کاملQuasi-hadamard Product of Analytic P-valent Functions with Negative Coefficients
The authors establish certain results concerning the quasi-Hadamard product of analytic and p-valent functions with negative coefficients analogous to the results due to Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234 and 126(1987), 70-77).
متن کاملHadamard Product of Certain Classes of Functions
In this paper we consider the Hadamard product ? of regular functions using the concept of subordination. Let P (A,B) denote the class of regular functions subordinated to the linear fractional transformation (1 +Az)/(1−Bz), where A+B 6= 0 and |B| ≤ 1. By P (A,B) ? P (C,D) we denote the set {f ? g : f ∈ P (A,B), g ∈ P (C,D)} . It is known ([3], [7]), that for some complex numbers A,B,C,D there ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1982
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s016117128200026x